Biologisen tiedon saatavuus Postgenomiaikana Leena Palotie

Helsingin yliopisto ja Kansanterveyslaitos Broad Institute, MIT, Cambridge, USA

After Human Genome Project

Basic tools exist to characterize the biology behind human diseases

Completion of 468 Genome Projects

347 Bacterial26 Archeal95 Eucaryotic

Genome project(s) paved the way towards

- Immediate data release
- Open access to the data
- Data QC standards
- Rapid data integration
- Global collaborative effort

Biobanks

- Genome profiles
- Clinical data (health care information)
- Epidemiological data
- Life event data

European competitive niche in this era: societal, not technical

Well characterized populations

Reliable health care infrastructure

High quality, equal education

■ Top level expertise in genetics, epidemiology, clinical medicine,IT

Unique possibilities in health care-related genome research

Health Care Records

Hospital discharge registers

Old and new biobanks with varying study designs and IT infrastructures

- UK Biobank
- Estonian Genome project
- DeCode (Iceland)
- Swedish National Biobank Program (Lifegene)
- National birth cohorts (Norway, Finland..)
- "Trait focused" banks: EPIC, Carthagen, MORGAM, Kora, Finrisk...
- Genomeutwin cohorts
- NIH Prospective cohort based population study

Why massive data analyses are needed

- Effect of individual gene variant is small
- Multiple biological and life style variants contribute to the phenotype

Necessity of large cohorts

Genome era

- New type of research -> new challenges
- Use of public databases is critical
- Who is the inventor?
- Who owns the data?
- What data provides commercial value?
- Time to discovery?
- Data sharing across the centers

Critical bottlenecks:

- Relative lack of experts: We must build attractive centers to be able to recruite globally
- Lack of data harmonization: Demand for shared data and standards and facilitating databases
- Expensive technology: Platforms with high running costs and constant updating of large databases require intensified collaboration between academic institutes (and industry)
- The most expensive part, huge amount of clinical and life style data has been collected by the investments of our societies. It should be used!

Global effort is needed

- In data harmonization: genetic profiles, phenotypes, epidemiological data
- In pooling resources and expertise in genotyping metabolomics/ proteomics and statistical analyses
- In data delivery to scientific community and public

- Public Population Projects in Genomics (www.p3g.org)
- ESFRI efforts (www.biobanks.eu)

Genomics & Genetic Epidemiology

Research in large consortia with significant infrastructure

Genomics

Genomics

RO1 type funding

Large investments

compare: physics

"New ideas need new structures"

Lee Roy Hood

Data sharing in Biosciences

Data sharing in Biosciences

Open sourceImage: ProtectedAcademiaPrivate sector

Data sharing in Biosciences

Open source Protected Academia Private sector Academia

Data sharing in Genomics

Open source

Protected

- SNP consortium
- Genome project
 - Hapmap data
- Whole genome association studies

- Private genome project
 - Whole genome association studies produced in companies
 - Epidemiological data
 - Clinical data

"If you like the field to move forward, place the data on the web"

Eric Lander

Data sharing requirements

 Major funding agencies are producing very strict requirements for data release – NIH

– Wellcome Trust

Data integration of large population genetic projects

